- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Plum, Alex_M (2)
-
Baum, David_A (1)
-
Kempes, Christopher_P (1)
-
Peng, Zhen (1)
-
Serra, Mattia (1)
-
Serrano_Nájera, Guillermo (1)
-
Steventon, Ben (1)
-
Weijer, Cornelis_J (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Autocatalysis is thought to have played an important role in the earliest stages of the origin of life. An autocatalytic cycle (AC) is a set of reactions that results in stoichiometric increase in its constituent chemicals. When the reactions of multiple interacting ACs are active in a region of space, they can have interactions analogous to those between species in biological ecosystems. Prior studies of autocatalytic chemical ecosystems (ACEs) have suggested avenues for accumulating complexity, such as ecological succession, as well as obstacles such as competitive exclusion. We extend this ecological framework to investigate the effects of surface adsorption, desorption, and diffusion on ACE ecology. Simulating ACEs as particle-based stochastic reaction-diffusion systems in spatial environments—including open, two-dimensional reaction-diffusion systems and adsorptive mineral surfaces—we demonstrate that spatial structure can enhance ACE diversity by (i) permitting otherwise mutually exclusive ACs to coexist and (ii) subjecting new AC traits to selection.more » « less
-
Serrano_Nájera, Guillermo; Plum, Alex_M; Steventon, Ben; Weijer, Cornelis_J; Serra, Mattia (, Nature Communications)Abstract Embryonic tissues undergo coordinated flows during avian gastrulation to establish the body plan. Here, we elucidate how the interplay between embryonic and extraembryonic tissues affects the chick embryo’s size and shape. These two distinct geometric changes are each associated with dynamic curves across which trajectories separate (kinematic repellers). Through physical modeling and experimental manipulations of both embryonic and extraembryonic tissues, we selectively eliminate either or both repellers in model and experiments, revealing their mechanistic origins. We find that embryo size is affected by the competition between extraembryonic epiboly and embryonic myosin-driven contraction—which persists when mesoderm induction is blocked. Instead, the characteristic shape change from circular to pear-shaped arises from myosin-driven cell intercalations in the mesendoderm, irrespective of epiboly. These findings elucidate modular mechanisms controlling avian gastrulation flows and provide a mechanistic basis for the independent control of embryo size and shape during development.more » « less
An official website of the United States government
